DEMETHYLATION AND AUTO-OXIDATION OF DIFFERENT COBALT-BLEOMYCIN COMPLEXES

CORNELIS M. VOS, DICK SCHIPPER*, JACOBUS D. M. HERSCHEID and GERRIT WESTERA**

RadioNuclide Centre, Free University, P.O. Box 7161, 1007 MC Amsterdam, The Netherlands *Gist-Brocades N.V., Delft **Department of Internal Medicine, Free University Hospital, Amsterdam, The Netherlands

(Received for publication March 23, 1982)

Demethylation of Co-bleomycin A_2 by heating yields three different complexes: form I and form II and "orange" Co-bleomycin-demethyl A_2 . These complexes can be separated by HPLC and show different ¹H NMR spectra. Preparation of Co-bleomycin-demethyl A_2 by chelation of bleomycin-demethyl A_2 with cobalt yields a Co-bleomycin-demethyl A_2 , which is auto-oxidized into Co-bleomycin A_1 .

Cobalt-bleomycin-demethyl A_2 (Co-blm dA_2) is a suitable intermediate in the preparation of tumour-localizing Co-blm complexes^{1,2)}. When Co-blm dA_2 (Fig. 1) is prepared by heating Co-blm A_2^{33} , an HPLC-chromatogram of the reaction mixture reveals that another product is formed besides the expected forms I and II of Co-blm dA_2^{4} . The underlying study was conducted in order to identify the different products by both HPLC (high performance liquid chromatography) and ¹H NMR (proton nu-

Fig. 1. Structure of bleomycins.

clear magnetic resonance).

Experimental

Bleomycin A₂ (lot U 4300 A₂S) was chelated with an equivalent of CoCl₂ in 0.05 M phosphate, pH 7.0. Demethylation was performed by heating Co-blm A₂ for 18 hours at 100 ~ 120°C under reduced pressure (about 10^{-1} mm Hg). The demethylated products were purified by preparative HPLC (column: Nucleosil 10 C₁₈ (from Chrompack); eluent: 1% ammoniumacetate - methanol, 6: 4; flow 2 ml/minute; 1 mg per injection)^{5,6)}, after which the methanol was evaporated and the residue lyophilized twice, the second time from D₂O. ¹H NMR spectra were recorded on samples containing 0.2~1 mg Co-blm in 0.25 ml D₂O pH_m 5.7 at 250 MHz on a Bruker WM 250 spectrometer.

Results and Discussion

Demethylation

In Fig. 2a the HPLC-chromatogram of the reaction mixture of Co-blm A_2 after heating is given. It is obvious that at least three products have been formed under the reaction conditions chosen. The peaks 1 and 2 were also obtained when free blm A_2 was demethylated by heat, purified and chelated with cobalt to give the known form I and II of Co-blm dA_2 . These peaks (1 and 2) but also peak 3 (Fig. 2a) disappear upon addition of excess methyliodide in methanol reforming Co-blm $dA_2^{\tau_1}$. Therefore it seems that the latter peak also represents a Co-blm dA_2 complex. This assignment is supported by ¹H NMR analysis: the ¹H NMR spectra (Fig. 3a,b,c) of the isolated peaks 1, 2 and 3 (Fig. 2) all show a singlet at 1.95 ~ 1.98 ppm for the S-CH₃-group^{8,9}. This resonance is not present in ¹H NMR spectra of Coblm A_2 , whereas in free blm dA_2 this singlet is found at 1.90 ppm. The ¹H NMR assignments are summarized in Table 1.

		Observations ^{b)}									References				
		Free (d) A ₂	Co-A ₂ -I	Co-A ₂ -II	"Orange" Co-A2	Co-dA ₂ -I	Co-dA ₂ -II	"Orange" Co-dA2	Co-A ₁ -I	Co-A ₁ -II	Co-B ₂ -I	Co-B ₂ -II	Free A ^{2¹⁸⁾}	Co-tetrapept. A ¹⁷⁾	"Orange" Co-blm ¹⁾
Assig	nments ^{a)}														
$C_{(-11)}H_3$		1.86	2.32	2.37	?	2.31	2.36	2.38?	2.33	2.38	2.31	2.37	2.06	2.48	
Term	inal amines														
A_2	$C_{(-52)}H_2$	2.05	2.01	2.02	2.09								2.20		2.20
	C(-54,55)H3	2.80	2.81	2.78	2.81								2.94		2.92
dA_2	$C_{(-52)}H_2$	1.81					1.82	1.84							1.94
	$C_{(-54)}H_{3}$	1.90				1.95	1.98	1.98							2.10
A1	$C_{(-54)}H_{3}$								2.57	2.58					
\mathbb{B}_2	$C_{(-52,53)}H_2$										1.50	1.54			
pH_m							5.7						5.0	6.0	5.2

Table 1. Chemical shifts (relative to external TMS) in the high field part of ¹H NMR spectra of several Cobleomycin complexes.

a) Annotations according to Fig. 1.

b) Abbreviations used: dA₂: bleomycin-demethyl A₂; Co-A₂-I: cobalt-bleomycin A₂ form I; etc.

Fig. 2. HPLC-chromatogram of Co-bleomycindemethyl A_2 complexes.

Column: Nucleosil 10 C_{13} . Eluent: 1% Ammoniumacetate-methanol, 6:4 (v/v), Flow: 2 ml/ minute.

- a) Co-blm A₂, demethylated by heating at 120°C overnight.
- b) 0.7 mM blm dA₂, chelated with cobalt, chromatographed immediately after preparation.
- c) preparation b) after 24 hours standing at room temperature.

Assignments: Peak 1: Co-blm dA_2 form I. Peak 2: Co-blm dA_2 form II. Peak 3: "orange" Coblm dA_2 . Peak 4: Co-blm A_1 form I. Peak 5: Coblm A_1 form II. Peak 6: "orange" Co-blm A_2 .

Fig. 3. High field part of ¹H NMR spectra in D_2O (pH_m 5.7).

a) Co-blm dA_2 form I. b) Co-blm dA_2 form II. c) "orange" Co-blm dA_2 . d) Co-blm A_1 form II.

Assignments are given in Table 1. The resonances with an asterisk are assigned to acetate, which is present as a residue from the HPLC-eluent.

Oxidation

The demethylation product of blm A_2 is described to be sensitive to oxidation leading to blm A_1^{10} . On the basis of analogy the preparation of Co-blm A_1 by heating Co-blm A_2 in the presence of oxygen was attempted. The reaction mixture however, gives the same HPLC-chromatogram as does the reaction mixture, prepared by heating *in vacuo*.

On the other hand when Co-blm dA_2 (prepared by chelation of blm dA_2 with cobalt) is chromatographed several hours after preparation, two new peaks appear at the expense of Co-blm dA_2 (Fig. 2c).

Realizing that, upon chelation of blm with cobalt, a reactive oxygen species is formed¹¹⁾ and assum-

ing that this oxygen species is responsible for the observed phenomenon, this phenomenon should also occur when blm dA_2 is chelated with iron (II). And indeed, it was found that new peaks in the HPLC-chromatogram were formed at the expense of Fe-blm dA_2 immediately after iron (II) was added to blm dA_2 . These peaks increase if a reducing agent like mercaptoethanol¹²⁾ is added. Upon chelation with iron (III) only a Fe (III)-blm dA_2 complex is formed, because no reactive oxygen species is generated upon chelation with a trivalent iron¹²⁾. By analogy, Cu-blm dA_2 also does not yield Cu-blm A_1 . These data suggests an auto-oxidation by the reactive oxygen species to Co-blm A_1 respectively Fe-blm A_1 . The hypothesis of oxidation is also supported by ¹H NMR analysis. The ¹H NMR spectra (Table 1, Fig. 3d) of the isolated peaks 4 and 5 (Fig. 2c) both show a singlet at 2.57 ~ 2.58 ppm, which singlet is not present in the ¹H NMR spectra of Co-blm A_2 and Co-blm $dA_2^{8,9}$.

The slow generation of the reactive oxygen species by cobalt (up to about 50% Co-blm dA_2 is oxidized in 24 hours) may be due to a rather stable cobalt-oxygen bond, which supports the results obtained by SUGIURA¹³⁾.

Different Forms

Although the existence of different forms of Co-blm complexes is firmly established^{4,14,15)}, new evidence can be found from the ¹H NMR spectra (Fig. 3 and 4). Analysis of the "methyl-region" of these spectra reveals a difference in chemical shift of the protons of the pyrimidine-methyl group of about 0.05 ppm between the so called forms I and II (see Table 1). This difference is not only observed for Co-blm A_2 and Co-blm A_1 , but also for Co-blm A_2 and Co-blm B_2 . Even the resonances of the protons of the sulfonium group are somewhat different for both forms as can be seen in Fig. 4a, in which the ¹H NMR spectrum of Co-blm A_2 form I (contaminated with form II) is given.

Besides the forms I and II of each Co-blm, a third complex exists, the so called "orange" Coblm¹⁾. In a previous study it was already proved that the chromatographic behaviour of "orange" Co-blm A_2 differed from those of Coblm A_2 form I and II¹⁶⁾. Now it is obvious also from the ¹H NMR spectra, that "orange" Coblm differs from Co-blm form I and II (see the region around 1 ppm and the singlet at 2.18 ppm which occurs only in "orange" Co-blm). The third Co-blm A_2 complex (peak 3 in Fig. 2a) Fig. 4. High field part of ¹H NMR spectra in D_2O (pH_m 5.7).

a) Co-blm A₂ form I (contaminated with form II).
b) Co-blm A₂ form II. c) "orange" Co-blm A₂.

Assignments are given in Table 1. The resonances with an asterisk are assigned to acetate, which is present as residue from the HPLC-eluent.

has also been assigned as "orange" Co-blm on basis of chromatographic behavior (similar retention times for the complex prepared in this study to that prepared by DERIEMER¹⁾) as well as on basis of the ¹H NMR spectrum, which is quite similar to that of "orange" Co-blm A₂, except of course for the resonances of the different functional groups. DERIEMER *et al.*¹⁾ prepared "orange" Co-blm by heating Co-blm overnight at 50°C followed by 2 hours at 110°C. Besides demethylation another process probably occurs upon heating of Co-blm, because demethylation by heating yields "orange" Coblm dA₂, which is not formed when Co-blm dA₂ is prepared by chelation of blm dA₂ with cobalt. The differences between the ¹H NMR spectra of the Co-blm complexes strongly suggest conformational differences between these complexes. DABROWIAK *et al.*¹⁷⁾ recently described the analysis of the cobalt complex of pseudotetrapeptide A of bleomycin, obtained by hydrolysis of "orange" and "green" (form I and II?) Co-blm A₂ and found both hydrolysis products to be identical. This result may be explained by a distortion of the conformation of Co-blm by the rigorous hydrolysis method used.

The ¹H NMR spectra may also be used to confirm the assignment form I and II of Co-blm complexes. The assignment form I and II has been made on the basis of the sequence of elution from a CM Sephadex C25 column⁴⁾ and it was assumed that this sequence was similar for the different Co-bleomycins. Furthermore the chemical shifts of the methyl groups of the so called forms I appear to be identical (see Table 1) as are the chemical shifts in the case of the forms II.

Acknowledgment

The authors are grateful to Dr. A. HOEKSTRA (director of the RadioNuclide Centre of the Free University at Amsterdam, the Netherlands) for critical reading of the manuscript; they would like to thank WAVE ZIJLSTRA for his technical assistence and Mr. B. VAN DER BERG for drawing the figures.

References

- DERIEMER, L. H.; C. F. MEARES, D. A. GOODWIN & C. I. DIAMANTI: BLEDTA: Tumor localization by a bleomycin analogue containing a metal-chelating group. J. Med. Chem. 22: 1019~1023, 1979
- Vos, C. M.: Labeled bleomycin as a tumor-localizing agent. A study on the structure, biological properties and radioiodination of cobalt-bleomycin complexes. Thesis, Rebecca Vos, Arnhem, 1982
- FUJII, A.: Preparation of bleomycinic acid from bleomycin A₂. In "Bleomycin, Chemical, Biochemical and Biological Aspects", pp. 343 ~ 344, ed. S. M. HECHT, Springer Verlag, New York, 1979
- Vos, C. M.; G. WESTERA & B. VAN ZANTEN: Different forms of the cobalt-bleomycin A₂ complex. J. Inorg. Biochem. 12: 45~55, 1980
- MURAOKA, Y.: Liquid chromatography of bleomycin. In "Bleomycin, Chemical, Biochemical and Biological Aspects". pp. 92~105, ed. S. M. HECHT, Springer Verlag, New York, 1979
- Vos, C. M. & G. WESTERA: Three different cobalt complexes of bleomycin A₂, B₂ and pepleomycin. J. Inorg. Biochem. 15: 253~260, 1981
- FUJII, A.; T. TAKITA, K. MAEDA & H. UMEZAWA: Chemistry of bleomycin. XI. The structures of the terminal amines. J. Antibiotics 26: 398~399, 1973
- Sadtler Standard Spectra: No. 535 M (DMSO; δ 2.52 ppm in CCl₄) and No. 6344 M (DMS; δ 2.06 ppm in CCl₄) (According to Ref. 9 these values are 3.20, 2.50 ppm respectively). Sadtler Research Laboratories, Philadelphia
- UMEZAWA, H.: Natural and artificial bleomycins. Chemistry and antitumour activities. Pure & Appl. Chem. 28: 655~680, 1971
- ECKELMAN, W. C.; W. J. RZESZOTARSKI, B. A. SIEGEL, H. KUBOTA, M. CHELLIAH, J. STEVENSON & R. C. REBA: Chemical and biologic properties of isolated radiolabeled bleomycin preparations. J. Nucl. Med. 16: 1033~1037, 1975
- SUGIURA, Y.: Electron spin resonance studies of 1: 1: 1 bleomycin-cobalt(II)-oxygen adduct complex. In "Bleomycin, Chemical, Biochemical and Biological Aspects". pp. 165~169, ed. S. M. HECHT, Springer Verlag, New York, 1979

- 12) SAUSVILLE, E. A.; J. PEISACH & S. B. HORWITZ: Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 17: 2740~2746, 1978
- 13) SUGIURA, Y.: Oxygen binding to cobalt(II)-bleomycin. J. Antibiotics 31: 1206~1208, 1978
- KAKINUMA, J.; R. NAGIYAMA & H. ORII: Chemical properties and tumor affinity of separated complexes of cobalt-bleomycin. Eur. J. Nucl. Med. 5: 159~163, 1980
- RABAN, P.; J. BROUSIL & P. SVIHOVCOVA: Chemical and biological properties of bleomycin labelled with Co-57. Eur. J. Nucl. Med. 4: 191~197, 1979
- 16) Vos, C. M.; G. WESTERA & D. SCHIPPER: A ¹³C NMR and ESR study on the structure of the different forms of the cobalt-bleomycin A₂ complex. J. Inorg. Biochem. 13: 165~177, 1980
- 17) DABROWIAK, J. C. & M. TSUKAYAMA: Cobalt (III) complex of pseudotetrapeptide A of bleomycin. J. Am. Chem. Soc. 103: 7543~7550, 1981
- 18) CHEN, D. M.; B. L. HAWKINS & J. D. GLICKSON: Proton nuclear magnetic resonance study of bleomycin in aqeous solution. Assignment of resonances. Biochemistry 16: 2731 ~ 2738, 1977